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An Observation
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Properties of this Automaton?

Computer internal representation of the course of events of the real
automaton

Implementation as a directed graph

e Task: Automaton is supposed to learn the course of events from
observing real traffic lights

Here: Model ignores the time
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A Weather Observation
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e Behaviour is not deterministic any more
e Observation is made daily at 12h00 = equidistant, time factor
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A Markov Chain for the Weather

p(Su|Su)=.3

p(Su|Cl)=.3
p(Ra|Cl)=.5

p(Cl|Ra)=.4 p(Cl|Su)=.5

@

p(clicl)=.2
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Seasonal Variations

Weather changes strongly depending on the season
Season is not (exactly) observable

Begin and end of the season is imprecise
e SIMPLIFYING first order MARKOV assumption:
Probability for the weather ONLY depends on

e The weather of the day before (observable) and
e The season (not observable)
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A Hidden Markov Model for the Weather

p(Ra|Sp)=.3 p(Ra|S)=.2
p(Sulsp)=.4 p(Su|s)=.5
p(Cl|sp)=.3 p(Cl|s)=.3
p(S|Sp)=.1
p(SpISp) p(S|S)=.9
=9
P(SpIW) p(FIS)=.1
(Wi p(FIF)=9
p(Ra|W
p(Sul|wW
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Isolated Word Recognition

e Given: Asetof words W = {W;,..., W}
e Observed is a sequence of feature vectors X = xq,..., X7 (utterance)
e Which word was uttered?

— Decision according to the Bayes formula

P(X | W) - P(W))
P(X)

I = argmax P(W, | X) with P(W,|X) =
i

e A priori probability of the words P(W)) is, e.g., estimated via counting a
training sample

e P(X | W)) can not approximated, e.g., with a Gaussian density function,
because the length T of the utterance is variable

e however: P(X | W) can be estimated with Hidden Markov Models
(HMMs)
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Hidden Markov Models

Task: Estimate the probability P(x1, Xz, .., x7) for arbitrary values of T

e Problem 1: The stochastic process, which generates the x;, is in reality
not stationary, i.e ., P(x;) depends on the spoken phoneme
therefore it is not possible to simply assume that
P(x1, X2, .., x7) = [11_4 P(x)

e Problem 2: Since the x; can be feature vectors, to compute, e.g.,
P(x¢—1, X;) is very difficult
if x; is 24-dimensional, only 10 observations mean that a
240-dimensional density has to be estimated
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Hidden Markov Models

Trick 1: Introduction of discrete, hidden states g; € {s1,..sn}
e The x; only depend on the current state g :
P(x1. %, XT) = g P(G1)-P(xt|an) TT 1, P(xilar)- P(atlan. . Gi—1)
Trick 2: Assume that the stochastic process that generates the g; is a
stationary first order Markov process, i.e., the following holds:

P(at| g1, qe-1) = P(qt | Qt—1)
e then P(x1, X2, .., X7) can be computed as follows:
P(Xt, X, . X7) = Xg g P(a1) - POxtlan) - TIZo POxtlar) - Pt @)



FRIEDRICH-ALEXANDER
= UNIVERSITAT
ERLANGEN-NURNBERG

Hidden Markov Models

For the computation of P(xi, X2, .., X7) only the densities
P(x|qt), g: € {s1,..Sn} and the probabilities P(qg¢|g;—1) are necessary

e Since the Markov process is stationary, the P(q:|g:—1) are independent
of t and can be stored in an NxN matrix

e The P(g;) are N different values

e The P(x;|q:) can be chosen depending on the application, e.g., N
different Gaussian densities
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Hidden Markov Model: Definition

HMM X = (7, A, B) with b,(0)  b5:(0)  b(0)
o 7 = (m;): P(qy) start probabilities
o A= [g;]: P(q: = sj|qi—1 = s;) transition probabilities
e B = (b)): P(x;|q: = s;) emission probabilities depending on model type:
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Hidden Markov Model: Definition

aiy a2 as3
™ a2 a3 @
hidden a3
observable

e discrete HMM: finite emission alphabet, e.g., VQ codebook classes

e continuous HMM: Mixture densities
Bi() = 23y wie - N (X Tie)

e semi-continuous HMM:
bi(x) = 34y wic - N (Xl T)
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HMM: Four Problems

0. How to decide on the topology of the HMM, i.e. which transition
probabilities P(s;|s;) > 0 will be allowed and which will be set to
P(S,'|Sj) =07?

1. How can the production probability P(x, .., xr|\) be computed
efficiently?

2. Decoding: What is the most likely transition sequence, given an
observation xq, ..x7?

3. How can the parameters of the HMM be estimated from a training
sample?

N.B.: The first problem is application dependent and a lot of hand crafting, so
many people speak of three problems
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HMM Topologies (Problem 0)

e Topologies and number of states is often determined manually

o |f all states are connected to each other, the model is called an ergodic
HMM

e appropriate model topologies for speech recognition (> 0 entries in the
transition matrix are highlighted in grey)



RIEDRICH-ALEXANDER
NIVERSITAT
ERLANGEN-NURNBERG

TECHNISCHE FAKULTAT

HMM Topologies (Problem 0)
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Estimation of the Production Probability (Problem 1)

Wanted: The probability P(O | A) that O = Oy, ..Or was generated by A

e As above, only in different writing: Computation of the production
probability via summing up over all possible state sequences
P(O|A) = Ygeor PO, X)) = Yycor 7abey (01) - TI, @q—saba(Or)

e About 2T - N™ multiplications: Exponential complexity with T

e = Polynomial complexity via Markov assumption

o Simplification by introducing the forward and backward probability «, 8
(only one probability necessary, but will need both later)

e Forward probability:
at(j) = P(Or...Onaqr=j| A)

e Backward probability:
ﬂz(l) = P(O[+1 ...0r ‘ aqt = i, A)

e For each time t it holds:
() Bi() = P(O,q=j|X) and P(O|X) = S, au(j)Bi())
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Estimation of the Production Probability (Problem 1)

2 equivalent algorithms, either with forward or backward probability
e Initialisation:

Forallj=1,.,N foralli=1,.,N
a1 (j) = mib;(Or) Br(i) =1
¢ Recursion: set .
fort >1andallj=1,..,.N fort< Tandalli=1,..,N
N N
a(f) = <Z aH(i)a,-,> bi(Or) Bi(i) = ayby(Or1) B ()
i=1 j=1

e Termination: compute

P(O[A) = ZQT(/') P(O|A) = iﬂibi(a )61(7)
=

J=1
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Estimation of the Production Probability (Problem 1)

e both algorithms need the same computing time

e The complexity is quadratic w.r.t. N and linear w.rt. T:2- N2 . T

multiplications

O, Or
T T
| |
|
|
S1f---- <\ S T -
|
S r-———- ‘F ””””””” T -
|
o aNG | f
|
Sa [~~~ A RV -
S5 F---- L ¥ _

spaltenweise

zeilenweise




FRIEDRICH-ALEXANDER
= UNIVERSITAT
ERLANGEN-NURNBERG

Viterbi Algorithm (Problem 2)

We are looking for the state sequence gy, ..qr, which maximises
P(qy,..,g7 | O, A), i.e., the most likely state sequence of the HMM during the
observation

e a posteriori probability for a state sequence g
~ P(O,g|A
P(q| O,A) = /g(o‘|1>\))
e q* is optimal state sequence if
P(O,q* | A) = maxgeor P(O,q|A) =1 P*(O]A)
e Viterbi Algorithm: Alternative for the computation of the forward matrix

e The following probabilities are computed instead of the a;(j):
9(j) = max{P(O;y...0qs...q | A) | g € QT with g; = j}
e Back pointers for the extraction of the state sequence
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Viterbi Algorithm (Problem 2)

o Initialisation:
Set 191(]) = TI'jbj(O1) and 1[)1(/) =0.forallj=1,...,N

e Recursion: Forallj=1,... N set

04(j) = max(di-1(1)aj)b(Or) and (j) = argmax Ji—1(i)a;

e Termination: Set

P*(O| X) = maxd7(j) and g7 = argmax97())
/ J

e Backtracking: Fort =T —1,...,1 the optimal sequence results in

a = Yer1(Gi1)
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ML Estimation of the Model Parameters (Problem 3)

Wanted: A set of HMM parameters A, given a training utterance O

ML estimation: Choose X such that the following goal function is
maximised:

Samm(A) = logP(O| A) = log qugr P(O,q | \)
Observable random variable: X = O

Hidden random variable: Y = q

Parameter to be estimated: B = A

Connection between O and q is known
— Application of the Expectation Maximisation (EM) algorithm

Maxinlise X w.r.t. the Kullback-Leibler StatistiAcs
O(A> }‘) = ZqGQT P(q | 07 A) : |Og P(07 q ‘ A)
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ML Estimation of the Model Parameters (Problem 3)

For the computation of the a posteriori Probability P(q | O, A) the following
variables are introduced:
o a posteriori transition probability for s; — s; at time

&) = P(gr=1,q41=41]0,X)
P(qt:iaqT—H :],O‘A)
P(O|X)

_ a¢(1)ajbj(Or1)Br+1()) 1<t<T

>y ad)Bi(i)
e a posteriori state probability for s; at time t:

N — Plg — i _ )
(i) = Pla=710.A) = =060

e Summing up &:(i, ) and ~:(f) across all t — Expected value for
transitions s; — s; and stay in s;, respectively
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Baum-Welch Formulae (Problem 3)

The estimation formulae stemming from the EM algorithm for HMMs are
referred to as Baum-Welch formulae, the training as Baum-Welch training
oder Forward-backward algorithm

Baum-Welch Formulae for HMMs with discrete emission density:
(')61 ( ')

5 _ St &0 /> _ zf; af<'>a,,b,-(ot+1)ﬁt+1(/)
: POHRE() S (i) Bali)
2 Zt 17U )X[o, i Zt:1 a(f) t(f)X[o,:vk]

by = = .
Zt=1 72 (/) Zt=1 at(f)Be()
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Baum-Welch Formulae (Problem 3)

® X[ = 1 for true statements and 0 otherwise
e |terative application leads to a local optimum

e Effort of one iteration is only minimally higher than computation of the
forward and backward matrix
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Viterbi Training (Problem 3)

e Application of the EM* algorithm is referred to as Viterbi training

e Optimisation w.r.t. the Viterbi rating
P*(0|X)=P(0,q" | A"

o significantly more efficient than BWT

o less reliable than BWT with small training samples

e VT corresponds to BWT with modified a posteriori probabilities
() = Xlg;=si] and & (i,j) = X[g; =s1,q7,,=5]]
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Viterbi-Training (Problem 3)

e Choose a start model A
e Forn=1,2,...:
(1) Search for the optimal state sequence g with

P(0,q" | A" V) = maxP(0,q | A" ")
q

using the Viterbi algorithm.
(2) Compute the start, transition, and emission frequencies belonging to g~
T—1 T
Ti = Xigy=s]> 8 = Z Xlaf =si.q7,1=9] and bk = Z Xlaf =5-0=]
t=1 t=1
(3) Normalise % = 7i/ >, i, & = a;/ > _; a; and b = b/ 3, bk
(4) Set A = (@, &, b)
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Practical Use of HMMs

For long utterances the multiplication of many probabilities with limited
numerical precision can quickly lead to values =0

o 15 corrective: Introduce scaling/normalisation using time cycle
dependent scaling factors C; in the forward algorithm
i) = &) = S5
ay(f) can always be reconstructed, since ay(j) = Cy - Co - - - Gt - au(j)
o 2" corrective: Take the logarithm:
¢ In the Viterbi algorithm logarithmic probabilities are used — muiltiplication
becomes addition
e Problem: In the forward algorithm logarithmic probabilities have to be
added — Kingsbury-Rayner Formula
log(p1 + p2) = logpr + log(1 + €°9P2~9Pr)
o Speed up with a table of log(1 + g°9P2~'%9P1)
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Practical Use of HMMs

o Initial estimates A(®) have to be found:
e Use the LBG-algorithm to cluster all feature vectors and estimate an initial
discrete HMM, which is the initialisation for the continuous HMM
e The emission densities of the continuous HMMs can be initialised via
clustering of the segmentation generated with the discrete HMMs
o if there are several training examples per HMM, the estimation formulae
change just as with the EM algorithm
e e.g. the estimation formula for transition probability:
T I7771 m ..
N v/2p 42 e ICEC S()
B D SEIN O SHE LI
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Continuous HMM

o discrete HMMs need a previous VQ:
X=xy...x7 — O=04,...,07r = loss of information

e continuous emission densities b;(x), x € R to process the feature
vectors: performance characterised via mixture densities P(X,q | A)

ai

T

by by bs by | continuous
emission
pdfs

e bj(x) from a parametric family of densities, e.g., Gaussian distribution
densities \/

states
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Continuous HMMs: Estimation Formulae

e Estimation formulae for start and transition probabilities and computation
of the probabilities equivalent to discrete HMMs
e For Gaussian distributions:

b(x) = N(x|p, x))

T

N ;
Ky = Z,%(j)t;%mxr
. 1 & R 3
R P IICRICRN
1 T
— ()xexe — /L/ﬁ/T
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Gaussian Mixture Densities

e Emission density is a Gaussian mixture density:

K
) = D ckgi(x) ZC/kNX\M,ka i) chk_1
k=1

k=1

Any density function can be approximated with a large number of
Gaussians

Broadly used in Pattern Recognition
The mixture component k; € K is a hidden variable as well
Production probability

P(X|A) = ZZPXq,kH\

qeQT keKT
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Gaussian Mixture Densities: BW Estimation Formulae

a posteriori Selection probability of the components k in s; at time t:

GUk) = P(gr=jk=k|X,A)
P()}\A) SN i (Daickgi(x:)Bi(j)  falls t > 1
% S mickgi(X1)B1() falls t = 1

Estimation formulae:

(A:I'k = thy ) Z Q(/: k)
o 1 L
SR e PR

-
1 . T N A T
Z' = — ,k Xt X — P P
ik S G0.R) ;Ct(/ )Xt Xt oy b
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Semi-continuous HMMs (SCHMM)

e Markov models with semi-continuous emission densities:
K K K
bi(x) = D ckgk(®) = YN (x| e En) . Y ok =1
k=1 k=1 k=1

o Difference to continuous HMMs with mixture densities: Components for

one state, now for all states
e SCHMM has ability to approximate mixture densities but needs less

parameters

& ® ® & ® ®

Mixture
components
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Semi-continuous HMM

o Mixture weights ¢; can also be considered to be emission probabilities
of a discrete HMM

e SCHMM evaluates all codebook classes, density values gk (x) weigh the
discrete emission probability (soft vector quantisation)

e VQ s part of the SCHMM
e the SCHMM can also be placed between discrete and continuous HMM
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Properties of Semi-continuous HMMs

T T
kontinuierliche HMM ——
nr diskrete HMM === |
semikontinuireliche HMM ====*

Wortfehlerrate in %

Anzahl Trainingssitze in Tausend

e Properties of a SCHMM:
e Compact parameter space
e No distortion due to quantisation
e Inclusion of the VQ in the process of model optimisation
e With little training data the SCHMM is better than a continuous HMM,

with much more data it is worse



Semi-continuous HMM: BW Estimation Formulae

Summation of the density statistics over all states

Ij:k = Z ZCt(], ZZ<IJ7

T N

¥ i K T T
K ZZQ(L ;;CU )Xt X; By b
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