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Motivation

• We want to compute a linear decision boundary.

• We assume that classes are linearly separable.

• Computation of a linear separating hyperplane that
minimizes the distance of misclassified feature vectors
to the decision boundary.
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Objective Function

Assume the following:

• Class numbers are y = ±1
• The decision boundary is a linear function:

y⇤ = sgn(↵T x + ↵0).

• Parameters ↵0 and ↵ are chosen according to the optimization problem

minimize D(↵0,↵) = �
X

x i2M
yi · (↵T x i + ↵0)

where M includes the misclassified feature vectors.
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Objective Function (cont.)

• The elements of the sum in the objective function depend on
the set of misclassified feature vectors M.

• In each iteration step the cardinality of M might change.

• The cardinality of M is a discrete variable.

• Competing variables: continuous parameters of linear decision
boundary and the discrete cardinality of M.
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Minimization of Objective Function

Remember the objective function D(↵0,↵):

minimize D(↵0,↵) = �
X

x i2M
yi · (↵T x i + ↵0)

The gradient of the objective function is:

@

@↵0
D(↵0,↵) = �

X

x i2M
yi

@

@↵
D(↵0,↵) = �

X

x i2M
yi · x i
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Minimization of Objective Function (cont.)

We want to take an update step right after having visited each misclassified
observation. The update rule in the (k + 1)-st iteration step is:

✓
↵(k+1)

0

↵(k+1)

◆
=

✓
↵(k)

0

↵(k)

◆
+ �

✓
yi

yi · x i

◆

Here � is the learning rate which can be set to 1 without loss of generality.
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Minimization of Objective Function (cont.)

Input: training data: S = {(x1, y1), (x2, y2), (x3, y3), . . . , (xm, ym)}

initialize k = 0, ↵(0)
0 = 0 and ↵(0) = 0

repeat

select pair (x i , yi) from training set.
if yi · (xT

i ↵
(k) + ↵(k)

0 )  0 then

✓
↵(k+1)

0

↵(k+1)

◆
=

✓
↵(k)

0

↵(k)

◆
+

✓
yi

yi · x i

◆

k  k + 1
end if

until yi · (xT
i ↵

(k) + ↵(k)
0 ) > 0 for all i

Output: ↵(k)
0 and ↵(k)
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Remarks on Perceptron Learning

• The update rule is extremely simple.

• Nothing happens if we classify all x i correctly using the given linear
decision boundary.

• The parameter ↵ of the decision boundary is a linear combination of
feature vectors.

• The decision boundary thus is:

F (x) =

 
X

i2E
yi · x i

!T

x +
X

i2E
yi =

X

i2E
yi · hx i , xi+

X

i2E
yi

where E is the set of indices that required an update.
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Remarks on Perceptron Learning (cont.)

• The final linear decision boundary depends on the initialization,
i. e. ↵(0)

0 and ↵(0).

• The number of iterations can be rather large.

• If data are not linearly separable, the proposed learning algorithm will
not converge. The algorithm will end up in hard to detect cycles.
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