Lecture 10:
Recurrent Neural Networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10- 1 May 3, 2018



“Vanilla” Neural Network

one to one

\ Vanilla Neural Networks
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
f Pt f Pt Pt
f f bt Pt bt

\ e.g. Image Captioning
image -> sequence of words
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
f Pt f Pt Pt
f f bt Pt bt

\ e.g. Sentiment Classification
sequence of words -> sentiment
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
f Pt f Pt Pt
f f bt Pt bt

\ e.g. Machine Translation
seq of words -> seq of words
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
f Pt f Pt Pt
f f bt Pt bt

/

e.g. Video classification on frame level
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Recurrent Neural Network
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Recurrent Neural Network

usually want to
predict a vector at
some time steps
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Recurrent Neural Network

We can process a sequence of vectors x by

applying a recurrence formula at every time step: y
ht — fW (ht—la mt)
new state / old state input vector at T
some time step
some function x

with parameters W
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Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

ht — fW(ht—la mt)

Notice: the same function and the same set «
of parameters are used at every time step.
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(Simple) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y hy = fW(h’t—h CUt)
|

h, = tanh(Wpph 1 + Wopxy)

X Yt = Whyht

Sometimes called a “Vanilla RNN” or an
“Elman RNN” after Prof. Jeffrey EIman
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RNN: Computational Graph
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RNN: Computational Graph
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RNN: Computational Graph

h0—>fW —>h1—>fW —>h2—>fW —>h3—>.-.—>h_|_
X1 X2 X3
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RNN: Computational Graph

Re-use the same weight matrix at every time-step

h0—>fW —>h1—>fW —>h2—>fW —>h3—>.-.—>h_|_
W X1 X2 X3
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RNN: Computational Graph: Many to Many

Yi Y5 Y3 Yt
T ! ! !
h0—>fW—>h1—>fW—>h2—>fW—>h3—>...—>hT
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RNN: Computational Graph: Many to Many

Y, [ L, Yo 7 L Y3 L, Yr L,
h0—>fW —>h1—>fW —>h2—>fW —>h3—>.-.—>h_|_
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RNN: Computational Graph: Many to Many -

Y, ™ L, Y, 7 L, Y3 L, Yt L,
h0—>fW —>h1—>fW —>h2—>fW —>h3—>.-.—>h_|_
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RNN: Computational Graph: Many to One

y
h0—>fW—>h1—>fW—>h2—>fW—>h3—>...—>hT
W X1 X2 X3
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RNN: Computational Graph: One to Many

Yi Y5 Y3 Yt
T T ! !
h0—>fW—>h1—>fW—>h2—>fW—>h3—>...—>hT
/X
W
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Sequence to Sequence: Many-to-one +
one-to-many

Many to one: Encode input
sequence in a single vector

\o
- X =
NOX S

N
w X (=

(o8]

_|

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014
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Sequence to Sequence: Many-to-one +
one-to-many

One to many: Produce output

sequence from single input vector
Many to one: Encode input
sequence in a single vector

<

> -
e <

\o
X |—ps
X |—ps
N
X s
wW
_|
N

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014
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Example:
Character-level
Language Model

Vocabulary:

[h,e,l,0]

Example training - 0 0 0

sequence. input layer 8 (1) (1) ?

T he"ou 0 0 0 0
input chars: “nh” e i I
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Example:
Character-level
Language Model

hi = tanh(Whphi—1 + Wipat)

VocabUIary' hidden layer _(()):i - ég - _%15 W—hrl '83
[h,e,l,o] 0.9 0.1 -0.3 0.7

Eamole train T 1w
Xampie training : B B B
sequence. input layer 8 (1) (1) (1)
“hello” g 0 L 0
input chars: “h” “e” “t 1y
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Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

target chars:

output layer

hidden layer

input layer

input chars: ¢

Fei-Fei Li & Justin Johnson & Serena Yeung

1.0 0.5
2.2 0.3
-3.0 -1.0
4.1 1.2
0.3 1.0
-0.1 > 0.3
0.9 0.1
1 0
0 1
0 0
0 0
h" “e”

Lecture 10 -

\

0.1 0.2

05 -1.5

1.9 -0.1

11 2.2

T T W_hy
0.1 |\w hnl -0-3
05— 0.9

0.3 07

T TW_xh
0 0

0 0

1 1

0 0

“I" “I”
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Example: Sample |

Character-level s
Language Model Softmax | 40
Sampling L
output layer _23%
41
Vocabulary: T
[h,e,l,0] | 03
hidden layer | .01 —
0.9

At test-time sample
characters one at a time, bt aver
feed back to model

Bl ) o) (=) | ——

input chars:  “
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Example: Sample ?\

Character-level it
Language Model e
Sampling e
output layer _23%

41

Vocabulary: T
[h,e,l,0] . P
hidden layer | -0.1

0.9

At test-time sample
characters one at a time, bt aver
feed back to model

S |loco=a|—»
0, |loo-~o

input chars:  “
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“ “”
Exam ple: Sample ?,\ )

Character-level ol |
Language Model Softmax a0 || | o
Sampling 1TO 0.?5
output layer _23% 3%
4.1 12
Vocabulary: T T
[h,e,l,0] o Jos 10
idden layer .(())91 > 8;13 —
At test-time sample T T
characters one at a time, o é E
feed back to model L
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Example: Sample ?\ R R
Character-level a3 25 1 1
Language Model Softmax— | &) =] |
. t t t t
Sampling
output layer _23% 3% ?g :(1)?
41 1.2 1.1 2.2

Vocabulary: T ] y Pny
[h.e,l.0] s |23 || 28|01 b0
0.9 0.1 -0.3 (0174

At test-time sample T
characters one at a time, o é
0
-

feed back to model

input chars:
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Forward through entire sequence to

BaCkpropagatK)n through tlme compute loss, then backward through

entire sequence to compute gradient

Loss
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Truncated Backpropagation through time

Loss

Run forward and backward
through chunks of the
sequence instead of whole
sequence
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Truncated Backpropagation through time

Loss

ST AN

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps
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Truncated Backpropagation through time

Loss

ST AN
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minimal character-level vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License

import numpy as np

data = open('input.txt', 'r').read()

chars = list data))

data_size, vocab_size = len(data), len(chars)

print 'data has %d characters, %d unique.' % (data_size, vocab_size)
char_to_ix = { ch:i for i,ch in enumerate(chars) }

ix_to_char = { i:ch for i,ch in enu e(chars) }

hidden_size =
seq_length
learning_rate =

= np.random.randn(hidden_size, vocab_size)*e.61

whh = np.random.randn(hidden_size, hidden_size)*0.01
= np.random.randn(vocab_size, hidden_size)’e.01

bh = np.zeros((hidden_size, 1))

by = np.zeros((vocab_size, 1))

un(inputs, targets, hprev):

inputs, targets are both list of integers
hprev is Hx1 array of initial hidden state
returns the loss, gradients on model parameters, and last hidden state

xs, hs, ys, ps = {}, {}, {}, {}
< np.copy(hprev)

for t in xrange(len(inputs)):
xs[t] = np.zeros((vocab_size,1))
xs[t][inputs[t]] = 1
hs[t] = np.tanh(np.dot(wxh, xs[t]) + np.dot(whh, hs[t-1]) + bh)
ys[t] = np.dot(why, hs[t]) + by 1
ps[t] = np.exp(ys[tl) / np.sum(np.exp(ys[tl))
loss += -np.log(ps[t][targets[t],0])

dwxh, dwhh, dwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why)
dbh, dby = np.zeros_like(bh), np.zeros_like(by)
dhnext = np.zeros_like(hs[6])
for t in reversed(xrange(len(inputs))):
dy = np.copy(ps[t])
dy[targets[t]] -= 1
dwhy += np.dot(dy, hs[t].T)
dby += dy
dh = np.dot(Why.T, dy) + dhnext
dhraw = (1 - hs[t] * hs[t]) * dh
dbh += dhraw
np.dot (dhraw, xs[t].T)
np.dot (dhraw, hs[t-1].T)
np.dot(whh.T, dhraw)
for dparam in [dwxh, dwhh, dwhy, dbh, dby]:
np.clip(dparam, -5, 5, out=dparam)

return loss, dwxh, dwhh, dwhy, dbh, dby, hs[len(inputs)-1]

dhnext
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min-char-rnn.py gist: 112 lines of Python

mple(h, seed_ix, n):

sample a sequence of integers from the model
h is memory state,

seed_ix is seed letter for first time step

x = np.zeros((vocab_size, 1))
x[seed_ix] = 1
ixes = []
for t in xrange(n):
h = np.tanh(np.dot(wxh, x) + np.dot(whh, h) + bh)
y = np.dot(why, h) + by
p = np.exp(y) / np.sum(np.exp(y))
ix = np.random.choice(range(vocab_size), p=p.ravel())
x = np.zeros((vocab_size, 1))
x[ix] = 1
ixes.append(ix)
return ixes

n p=0,0
mixh, mwhh, mwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why)
mbh, mby = np.zeros_like(bh), np.zeros_like(by) A

smooth_loss = -np.log(1.6/vocab_size)*seq_length
while True:

if p+seq_length+1 >= len(data) or n =
hprev = np.zeros((hidden_size, 1))
p=e

inputs = [char_to_ix[ch] for ch

data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

if n % 10

sample_ix
e =t
print '

sample(hprev, inputsfo], 200)
join(ix_to_char[ix] for ix in sample_ix)
-\n %s \n----' % (txt, )

loss, dwxh, dwhh, dwhy, dbh, dby, hprev = lossF:
smooth_loss = smooth_loss * ©.999 + loss *
if n % 100 : print 'iter %d, loss:

un(inputs, targets, hprev)

(n, smooth_loss)

for param, dparam, mem in zip([wxh, Whh, Why, bh, by],

[dwxh, dwhh, dwhy, dbh, dby],
[mwxh, mwhh, mwhy, mbh, mby]):
mem += dparam * dparam
param += -learning_rate * dparam / np.sqrt(mem + le-8)

p += seq_length
n4=1

(https://qgist.github.com/karpathy/d4dee
566867f8291f086)
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THE SONNETS

by William Shakespeare y

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament, _>
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held: X
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.
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t first: tyntd-iafhatawiaoihrdemot 1ytdws e ,tfti, astai f ogoh eoase rrranbyne ‘nhthnee e
at nrst. plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1ng

train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.

l train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.
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PANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Fei-Fei Li & Justin Johnson & Serena Yeung

VIOLA:

Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.
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The Stacks Project: open source algebraic geometry textbook

2 The Stacks Project
home about tagsexplained taglookup browse search bibliography recentcomments blog add slogans
Browse chapters Parts
- - 1. Preliminaries
Part Chapter online TeXsource view pdf 2. Schemes
Preliminaries 3. Topics in Scheme Theory
1. Introduction online tex()  pdf > 4. Algebraic Spaces
4 i i 5. Topics in Geometry
2. Conventions onI!ne tex©) Rdf > 6. Deformation Theory
3. SetTheory online tex()  pdf > 7. Algebraic Stacks
4. Categories online tex() pdf > 8. Miscellany
5. Topology onlfne tex()  pdf > Stiticics
6. Sheaves on Spaces online tex() pdf >
7. Sites and Sheaves online tex() pdf > The Stacks project now consists of
8. Stacks online tex() pdf > o 455910 lines of code
9. Fields online tex()  pdf > o 14221 tags (56 inactive tags)
10. Commutative Algebra online tex(® pdf > o 2366 sections

\

L atex S O u rce http:/stacks.math.columbia.edu/

The stacks project is licensed under the GNU Free Documentation License
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For @,,-, . Where £,,, = 0, hence we can find a closed subset % in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=Spec(R)=U xx U xx U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schyppy and U — U is the fibre category of S in U in Section, 7?7 and the fact that
any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

U=|JUixs, U

which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox . is a scheme where z.2’, s” € S’ such that Ox .+ = O, . is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(z'/S")
and we win.

To prove study we see that F|y is a covering of X, and 7; is an object of Fx/s for
i > 0 and F,, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M*=TI* ®Spcc(k) Os., s I:]}-)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S) 77 ¢, (Sch/S) fpps

and

V =T(S,0) — (U, Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.
Proof. See discussion of sheaves of sets. O
The result for prove any open covering follows from the less of Example ??. It may
replace S by X paces.étale Which gives an open subspace of X and T equal to Sz,
see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.
Suppose X = lim |X| (by the formal open covering X and a single map Proj, (A) =
Spec(B) over U compatible with the complex
Set(A) =T'(X, O‘\'_o'\. )

When in this case of to show that @ — Cz/x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 77
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU = [],_, _,, Ui be the scheme X over
S at the schemes X; — X and U = lim; X;. O
The following lemma surjective restrocomposes of this implies that F,, = F,, =
Fx,...00

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fx;s. Set T
Ji1 CTI},. Since I™ CI™ are nonzero over iy < p is a subset of Jn0 o Ay works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma ?? we see that
D(Ox+) = Ox(D)

where K is an F-algebra where d,,; is a scheme over S. O
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Proof. Omitted. O

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = O0x(£L)

Proof. This is an algebraic space with the composition of sheaves F on Xgqp. we
have

Ox(F) = {morphy xo, (G, F)}
where G defines an isomorphism F — F of O-modules. a
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ?7. O
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open

covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complez.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let
b: X =2 Y5 Y Y SV w3 X,
be a morphism of algebraic spaces over S and Y.
Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent
(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. O

This since F € F and z € G the diagram

S— >

l

§

Ox-

AN

=a —

gor,

=a ——a X

J

Spec(Ky) Morsets  d(Oxy,,.G)

is a limit. Then G is a finite type and assume S is a flat and F and G is a finite
type f.. This is of finite type diagrams, and

e the composition of G is a regular sequence,

e Oy is a sheaf of rings.

0

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U. a

Proof. This is clear that G is a finite presentation, see Lemmas 77,
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxe— Fz -UOx ) — 0}:0.\')‘(0?(‘,,)
is an isomorphism of covering of Oy, . If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition ?? and we can filtered set of
presentations of a scheme O x-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. O

If F is a finite direct sum Oy, is a closed immersion, see Lemma ??. This is a
sequence of F is a similar morphism.
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M firmware firmwarefihex2tw.c: restore missing default in switch statement 2 months ago You can clone with HTTPS
SSH, or Subversion
| fs vis: read file_handie only once in ha 0 4 days ag SH, or Subversion. @

i include Merge branch ‘perf-urgent-for-linus’ of gittigit kemel.org/publscm/ a day ago & Clone in Desktop

- init nit: fix regression by supporting devices with major:minor.offset fo a month ago
3 : <> Download ZIP
LT Llnrmn hemmnds Var L' A e it bmsmnl mermibru i insen -~ Y e e et LT B P
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static void do_command(struct seq file *m, void *v)

{
int column = 32 << (cmd[2] & 0x80); Generated

if (state)

cmd = (int)(int_state * (in_8(&ch->ch flags) & Cmd) 2 2 : 1); (:; (j
else CO e

seq = 1;
for (i = 0; i < 16; i++) {
if (k & (1 << 1))
pipe = (in use & UMXTHREAD UNCCA) +
((count & 0x00000000fff£f£f£f8) & 0x000000f) << 8;
if (count == 0)
sub(pid, ppc_md.kexec handle, 0x20000000);
pipe set bytes(i, 0);
}
subsystem info = &of changes[PAGE_SIZE];
rek controls(offset, idx, &soffset);

control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)
seq puts(s, "policy ");
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static void stat PC_SEC _ read mostly offsetof(struct seq argsqueue, \
pC>[11]);

static void
os_prefix(unsigned long sys)
{
fifdef CONFIG PREEMPT
PUT_PARAM RAID(2, sel) = get_ state_state();
set_pid sum((unsigned long)state, current_state_str(),
(unsigned long)=-1->lr full; low;
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. A
Multilayer RNNs
=1
hl = tanh W' hf
hi_1
—t e e e e e
h € R" Wt [n x 2n]
1 sigm _ _ _ _ _ _ _
0 sigm hi_q
g tanh
a=focd_+iog depth
hl = 0 ® tanh(c})

time
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- - Bengio et al, “Learning long-term dependencies with gradient descent
Va n I I I a R N N G ra d I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Iy = tanh(Whhht_l + thxt)

hi—1
] o L_» " = tanh ((Whh Wha) ( txt ))

t-1 T t .
- | o — tanh (W ( t_1>)
X .
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Bengio et al, “Learning long-term dependencies with gradient descent

| | }
Va n I I I a R N N G ra d I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Backpropagation from h,
to h,, multiplies by W
(actually W, T)

4 N\
Iy = tanh(Whhht_l + thxt)
¢ - hi—1
— tanh [ (W, Wi B
> stack L—_» ht an (( L L ) ( Tt ))
- T o — tanh (W (h;_1>>

ht-1 a
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- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

1
|
l__'
;
|
=
|
|
T
,__’
!
b
|
-

N
Al

-_—
hl

Computing gradient
of h, involves many
factors of W

(and repeated tanh)
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- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Y ' " 4 N
W—> — > tanh W—> — > tanh W—> - tanh W-’Q—> tanh
1A A A A
h. ——— stack —»> . —T——> stack —»> h. —T—— stack —»> h. —T——> stack —> N
0 - 1 2 - 3 - 4
LT " T ERT EED
X1 X2 X3 X4

_ _ Largest singular value > 1:
Computing gradient  Exploding gradients
of h, involves many
factors of W Largest singular value < 1:
(and repeated tanh)  vanishing gradients
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- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Y ' " 4 N
W—> — > tanh W—> — > tanh W—> - tanh W-’Q—> tanh
1A A A A
h. ——— stack —»> . —T——> stack —»> h. —T—— stack —»> h. —T——> stack —> N
0 - 1 2 - 3 - 4
LT " T ERT EED
X1 X2 X3 X4

_ _ Largest singular value > 1: _, Gradient clipping: Scale
Computing gradient | Exploding gradients gradient if its norm is too big
of h, involves many

grad_norm = np.sum(grad * grad)

factors of W Largest singular value < 1: if grad_norm > threshold:
(and repeated tanh) Vanishing gradients grad *= (threshold / grad_norm)
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- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Y ' " 4 N
W—> — > tanh W—> — > tanh W—> - tanh W—> — tanh
A 1oL 1oL A
h. ——— stack —»> . —T——> stack —»> h. —T—— stack —»> h. —T——> stack —> N
0 - 1 2 - 3 - 4
& T _4 - I ) - T / & T J
X1 X2 X3 X4

_ _ Largest singular value > 1:
Computing gradient  Exploding gradients
of h, involves many
factors of W Largest singular value < 1:
(and repeated tanh) | vanishing gradients

— Change RNN architecture
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Long Short Term Memory (LSTM)

Vanilla RNN

h; = tanh (W <ht—1>>
Tt

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation

Fei-Fei Li & Justin Johnson & Serena Yeung

LSTM

SR

o

tanh

cc=f0Oc_1+10g

ht = 0 ® tanh(c;)

g 11,74 (ht_1>
o i
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Long Short Term Memory (LSTM)

[Hochreiter et al., 1997] i Input gate, whether to write to cell
f: Forget gate, Whether to erase cell

o: Output gate, How much to reveal cell

vector from g: Gate gate (?), How much to write to cell
below (x)
X sigmoid | — | i
h sigmoid | — | f 1 o
W f . 9] W hi_1
vector from sigmoid | — | o ol — o Ty
before (h) g tanh
tanh — 19 ;
ct=fOc_1+10g
*
4h x 2h 4h 4*h hy = 0 ® tanh(c;)
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

a I

C » O— + —» C >

t-1 T A
> f
—>|_L> ( o

W— © tanh fl_ o hi—1
->g—'_> aln 0 o W X
tanh
h > stack L . O 1 g
1 t ° ht/ ¢t =fOc_1+i0g

| ht = o ® tanh(c;)
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Long Short Term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]
Backpropagation from c, to

-~ Y c,, only elementwise

C - O—> + —» C _  Mmultiplication by f, no matrix
1 < 14— y — U multiply by W
- f
> | _L> ( o
W— © tanh fl_ o hi—1
ng aln 0 o v Tt
tanh
h > stack . O B g
t-1 k ? = 0) ht/ Ct:fQCt_l—l—i@g

| h: = o ® tanh(c;)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - 101 May 3, 2018



Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

-
C / ® C ) C [ © ) C [ ®© )
e ~C; ~e 10 —C -0t e
oL i i
W ?—EgIQ telnh W g_j_>® talnh W g_j_>® talnh
— > stack —T > stack —T > stack
N o—————— © — ht7—> N f o———> ©— ht——> N t? o————>o©— h —
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Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

«
a Y 4 N 4 N
> O—> + —> C — - :@—>+<—_>C — - :@4—_>+<—_>C —
f f f
W— ;}, ® telnh W— ;} ®© talnh W— ;} ®© talnh
— > stack —T > stack —T > stack
<

Similar to ResNet!

QOO0 O
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Long Short Term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]

Uninterrupted gradient flow!

«
a Y 4 N C 4 N C
>»O—> + —> C —C - ‘®<—_>+<—_>C —~C ‘®<—_>+<—_>C —
Co- 1*‘*| Cr ] ‘ \— 7 ] ‘ \— 3
f f f
W— ;}, ® tanh W— ;} ®© tanh W— ;} ®© tanh
' ' '
— > stack —T > stack —T > stack
ey U ey U e
<
In between:

Similar to ResNet!

Fei-Fei Li & Justin Johnson & Serena Yeung

QOO0 O

XETNoS

Highway Networks

g:T(x7WT)
y=9g0H(@x,Wy)+(1—-9g)0Ox

Srivastava et al, “Highway Networks”,

ICML DL Workshop 2015
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- [An Empirical Exploration of
Oth e r R N N Va rl a n tS Recurrent Network Architectures,
Jozefowicz et al., 2015]
GRU [Learning phrase representations using rnn

encoder-decoder for statistical machine translation, e
Cho et al. 2014] z = sigm(Waze+b;)
r = sigm(Wyx, + Wi hy +b;)
Tty = U(erl't + Wh’r'ht—l + br) hiyyy = tanh(Wyn(r @ hy) + tanh(z,) + by) © 2
Zt = O'(szxt a0 thht—l T bz) e
o~ MUT2:
hy = tanh(Wypxe + Whp(r: © he—1) + bp)
_ z = sigm(Wex, + Wighe +5;)
ht = 2t ® ht_l —+ (]. — Zt) ® ht r = sigm(z; + Wiohy +b;)
hie+1 = tanh(Whn(r @ he) + Wenze + bn) © 2
+ ho(l-z2)
MUT3:
z = sigm(Wex + Wy, tanh(h b,
[LSTM: A Search Space Odyssey, S si,:;lu:H'x,.r: L +1§,)t)+ ;
Greff et al., 2015] ey = tanh{Wis(rOh)+ Waszi+h) 02
+ ho(1-2)
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Summary

- RNNs allow a lot of flexibility in architecture design

- Vanilla RNNs are simple but don’'t work very well

- Common to use LSTM or GRU: their additive interactions
improve gradient flow

- Backward flow of gradients in RNN can explode or vanish.
Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

- Better/simpler architectures are a hot topic of current research

- Better understanding (both theoretical and empirical) is needed.
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