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Outline 

 A brief history of SVM 
 Large-margin linear classifier 

 Linear separable 
 Nonlinear separable 

 Creating nonlinear classifiers: kernel trick 
 A simple example 
 Discussion on SVM 
 Conclusion 
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History of SVM 

 SVM is related to statistical learning theory [3] 
 SVM was first introduced in 1992 [1]  
 SVM becomes popular because of its success in 
handwritten digit recognition  
 1.1% test error rate for SVM. This is the same as the error 
rates of a carefully constructed neural network, LeNet 4. 
  See Section 5.11 in [2] or the discussion in [3] for details 

 SVM is now regarded as an important example of “kernel 
methods”, one of the key area in machine learning 
 Note: the meaning of “kernel” is different from the “kernel” 
function for Parzen windows 

[1] B.E. Boser et al. A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on 
Computational Learning Theory 5 144-152, Pittsburgh, 1992.  

[2] L. Bottou et al.  Comparison of classifier methods: a case study in handwritten digit recognition. Proceedings of the 12th 
IAPR International Conference on Pattern Recognition, vol. 2, pp. 77-82. 

[3] V. Vapnik. The Nature of Statistical Learning Theory. 2nd edition, Springer, 1999. 
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What is a good Decision Boundary? 

 Consider a two-class, linearly 
separable classification problem 

 Many decision boundaries! 
 The Perceptron algorithm can be 
used to find such a boundary 

 Different algorithms have been 
proposed (DHS ch. 5) 

 Are all decision boundaries 
equally good? 

Class 1 

Class 2 
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Examples of Bad Decision Boundaries 

Class 1 

Class 2 

Class 1 

Class 2 
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Large-margin Decision Boundary 

 The decision boundary should be as far away from the 
data of both classes as possible 
 We should maximize the margin, m 
 Distance between the origin and the line wtx=k is k/||w|| 

Class 1 

Class 2 

m 
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Finding the Decision Boundary 

 Let {x1, ..., xn} be our data set and let yi ∈   {1,-1} be 
the class label of xi 

 The decision boundary should classify all points correctly 
⇒ 

 The decision boundary can be found by solving the 
following constrained optimization problem 

 This is a constrained optimization problem. Solving it 
requires some new tools 
 Feel free to ignore the following several slides; what is 
important is the constrained optimization problem above 
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Recap of Constrained Optimization

 Suppose we want to: minimize f(x) subject to g(x) = 0 
 A necessary condition for x0 to be a solution: 

  α: the Lagrange multiplier 
 For multiple constraints gi(x) = 0, i=1, …, m, we need a 
Lagrange multiplier αi for each of the constraints 
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Recap of Constrained Optimization 

 The case for inequality constraint gi(x)≤0 is similar, 
except that the Lagrange multiplier αi should be positive 

 If x0 is a solution to the constrained optimization 
problem 

 There must exist αi≥0 for i=1, …, m such that x0 satisfy 

 The function                        is also known as the 
Lagrangrian; we want to set its gradient to 0 
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Back to the Original Problem 

 The Lagrangian is 

 Note that ||w||2 = wTw 
  Setting the gradient of     w.r.t. w and b to zero, we 
have 
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The Dual Problem 

 If we substitute                        to     , we have  

 Note that  

 This is a function of αi only 
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The Dual Problem 

 The new objective function is in terms of αi only 
 It is known as the dual problem: if we know w, we know 
all αi; if we know all αi, we know w 

 The original problem is known as the primal problem 
 The objective function of the dual problem needs to be 
maximized! 

 The dual problem is therefore: 

Properties of αi when we introduce 
the Lagrange multipliers 

The result when we differentiate the 
original Lagrangian w.r.t. b 



3/1/11 CSE 802. Prepared by Martin Law 13 

The Dual Problem 

 This is a quadratic programming (QP) problem 
 A global maximum of αi can always be found 

 w can be recovered by 
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Characteristics of the Solution 

 Many of the αi are zero 
 w is a linear combination of a small number of data points 
 This “sparse” representation can be viewed as data 
compression as in the construction of knn classifier 

 xi with non-zero αi are called support vectors (SV) 
 The decision boundary is determined only by the SV 
 Let tj (j=1, ..., s) be the indices of the s support vectors. We 
can write 

 For testing with a new data z 

 Compute                                                             and 
classify z as class 1 if the sum is positive, and class 2 
otherwise 

 Note: w need not be formed explicitly 
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The Quadratic Programming Problem 

 Many approaches have been proposed 
 Loqo, cplex, etc. (see http://www.numerical.rl.ac.uk/qp/qp.html) 

 Most are “interior-point” methods 
 Start with an initial solution that can violate the constraints 
 Improve this solution by optimizing the objective function 
and/or reducing the amount of constraint violation 

 For SVM, sequential minimal optimization (SMO) seems 
to be the most popular 
 A QP with two variables is trivial to solve 
 Each iteration of SMO picks a pair of (αi,αj) and solve the 
QP with these two variables; repeat until convergence 

 In practice, we can just regard the QP solver as a “black-
box” without bothering how it works 
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α6=1.4 

A Geometrical Interpretation 

Class 1 

Class 2 

α1=0.8 

α2=0 

α3=0 

α4=0 

α5=0 
α7=0 

α8=0.6 

α9=0 

α10=0 
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Non-linearly Separable Problems 

 We allow “error” ξi in classification; it is based on the 
output of the discriminant function wTx+b 

  ξi approximates the number of misclassified samples 

Class 1 

Class 2 
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Soft Margin Hyperplane 

 If we minimize ∑iξi, ξi can be computed by 

 ξi are “slack variables” in optimization 
 Note that ξi=0 if there is no error for xi 
 ξi is an upper bound of the number of errors 

 We want to minimize 

 C : tradeoff parameter between error and margin 

 The optimization problem becomes 
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The Optimization Problem 

 The dual of this new constrained optimization problem is 

 w is recovered as 

 This is very similar to the optimization problem in the 
linear separable case, except that there is an upper 
bound C on αi now 

 Once again, a QP solver can be used to find αi  
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Extension to Non-linear Decision Boundary 

 So far, we have only considered large-margin classifier 
with a linear decision boundary 

 How to generalize it to become nonlinear? 
 Key idea: transform xi to a higher dimensional space to 
“make life easier” 
 Input space: the space the point xi are located 
 Feature space: the space of φ(xi) after transformation 

 Why transform? 
 Linear operation in the feature space is equivalent to non-
linear operation in input space 

 Classification can become easier with a proper 
transformation. In the XOR problem, for example, adding a 
new feature of x1x2 make the problem linearly separable 
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Transforming the Data (c.f. DHS Ch. 5) 

 Computation in the feature space can be costly because it is 
high dimensional 
 The feature space is typically infinite-dimensional! 

 The kernel trick comes to rescue 

φ(  ) 

φ(  ) 

φ(  ) 
φ(  ) φ(  ) 

φ(  ) 

φ(  ) φ(  ) 

φ(.) φ(  ) 

φ(  ) 

φ(  ) 
φ(  ) 
φ(  ) 

φ(  ) 

φ(  ) 

φ(  ) 
φ(  ) φ(  ) 

Feature space Input space 
Note: feature space is of higher dimension 
than the input space in practice 
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The Kernel Trick 

 Recall the SVM optimization problem 

 The data points only appear as inner product 
 As long as we can calculate the inner product in the 
feature space, we do not need the mapping explicitly 

 Many common geometric operations (angles, distances) 
can be expressed by inner products 

 Define the kernel function K  by 
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An Example for φ(.) and K(.,.) 

 Suppose φ(.) is given as follows 

 An inner product in the feature space is 

 So, if we define the kernel function as follows, there is 
no need to carry out φ(.) explicitly 

 This use of kernel function to avoid carrying out φ(.) 
explicitly is known as the kernel trick 
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Kernel Functions 

 In practical use of SVM, the user specifies the kernel 
function; the transformation φ(.) is not explicitly stated 

 Given a kernel function K(xi, xj), the transformation φ(.) 
is given by its eigenfunctions (a concept in functional 
analysis) 
 Eigenfunctions can be difficult to construct explicitly 
 This is why people only specify the kernel function without 
worrying about the exact transformation 

 Another view: kernel function, being an inner product, is 
really a similarity measure between the objects  
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Examples of Kernel Functions 

 Polynomial kernel with degree d 

 Radial basis function kernel with width σ 

 Closely related to radial basis function neural networks 
 The feature space is infinite-dimensional 

 Sigmoid with parameter κ and θ  

 It does not satisfy the Mercer condition on all κ and θ 
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Modification Due to Kernel Function 

 Change all inner products to kernel functions 
 For training, 

Original 

With kernel 
function 
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Modification Due to Kernel Function 

 For testing, the new data z is classified as class 1 if f ≥0, 
and as class 2 if f <0 

Original 

With kernel 
function 
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More on Kernel Functions 

 Since the training of SVM only requires the value of K(xi, 
xj), there is no restriction of the form of xi and xj 

 xi can be a sequence or a tree, instead of a feature vector 

 K(xi, xj) is just a similarity measure comparing xi and xj 
 For a test object z, the discriminat function essentially is 
a weighted sum of the similarity between z and a pre-
selected set of objects (the support vectors) 
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More on Kernel Functions 

 Not all similarity measure can be used as kernel 
function, however 
 The kernel function needs to satisfy the Mercer function, 
i.e., the function is “positive-definite” 

 This implies that the n by n kernel matrix, in which the (i,j)-
th entry is the K(xi, xj), is always positive definite 

 This also means that the QP is convex and can be solved in 
polynomial time 
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Example 

 Suppose we have 5 1D data points 
 x1=1, x2=2, x3=4, x4=5, x5=6, with 1, 2, 6 as class 1 and 4, 
5 as class 2 ⇒ y1=1, y2=1, y3=-1, y4=-1, y5=1 

 We use the polynomial kernel of degree 2 
 K(x,y) = (xy+1)2 
 C is set to 100 

 We first find αi (i=1, …, 5) by 
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Example 

 By using a QP solver, we get 
 α1=0, α2=2.5, α3=0, α4=7.333, α5=4.833 
 Note that the constraints are indeed satisfied 
 The support vectors are {x2=2, x4=5, x5=6} 

 The discriminant function is 

 b is recovered by solving f(2)=1 or by f(5)=-1 or by f(6)=1, 
as x2 and x5 lie on the line                                  and x4 
lies on the line                               

 All three give b=9 
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Example 

Value of discriminant function 

1 2 4 5 6 

class 2 class 1 class 1 
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Why SVM Work? 

 The feature space is often very high dimensional. Why 
don’t we have the curse of dimensionality? 

 A classifier in a high-dimensional space has many 
parameters and is hard to estimate 

 Vapnik argues that the fundamental problem is not the 
number of parameters to be estimated. Rather, the 
problem is about the flexibility of a classifier 

 Typically, a classifier with many parameters is very 
flexible, but there are also exceptions 
 Let xi=10i where i ranges from 1 to n. The classifier 
    can classify all xi correctly for all possible 
combination of class labels on xi 

 This 1-parameter classifier is very flexible 
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Why SVM works? 

 Vapnik argues that the flexibility of a classifier should not 
be characterized by the number of parameters, but by 
the flexibility (capacity) of a classifier 
 This is formalized by the “VC-dimension” of a classifier 

 Consider a linear classifier in two-dimensional space 
 If we have three training data points, no matter how 
those points are labeled, we can classify them perfectly 
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VC-dimension 

 However, if we have four points, we can find a labeling 
such that the linear classifier fails to be perfect 

 We can see that 3 is the critical number 
 The VC-dimension of a linear classifier in a 2D space is 3 
because, if we have 3 points in the training set, perfect 
classification is always possible irrespective of the 
labeling, whereas for 4 points, perfect classification can 
be impossible 
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VC-dimension 

 The VC-dimension of the nearest neighbor classifier is 
infinity, because no matter how many points you have, 
you get perfect classification on training data 

 The higher the VC-dimension, the more flexible a 
classifier is 

 VC-dimension, however, is a theoretical concept; the VC-
dimension of most classifiers, in practice, is difficult to be 
computed exactly 
 Qualitatively, if we think a classifier is flexible, it probably 
has a high VC-dimension 
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Structural Risk Minimization (SRM) 

 A fancy term, but it simply means: we should find a 
classifier that minimizes the sum of training error 
(empirical risk) and a term that is a function of the 
flexibility of the classifier (model complexity) 

 Recall the concept of confidence interval (CI) 
 For example, we are 99% confident that the population 
mean lies in the 99% CI estimated from a sample 

 We can also construct a CI for the generalization error 
(error on the test set) 
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Structural Risk Minimization (SRM) 

Increasing 
error rate 

CI of test error 
for classifier 1 

Training error CI of test error 
for classifier 2 

Training error 

 SRM prefers classifier 2 although it has a higher 
training error, because the upper limit of CI is smaller 
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Structural Risk Minimization (SRM) 

 It can be proved that the more flexible a classifier, the 
“wider” the CI is 

 The width can be upper-bounded by a function of the 
VC-dimension of the classifier 

 In practice, the confidence interval of the testing error 
contains [0,1] and hence is trivial 
 Empirically, minimizing the upper bound is still useful 

 The two classifiers are often “nested”, i.e., one classifier 
is a special case of the other 

 SVM can be viewed as implementing SRM because ∑i ξi 
approximates the training error; ½||w||2 is related to 
the VC-dimension of the resulting classifier 

 See http://www.svms.org/srm/ for more details 
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Justification of SVM 

 Large margin classifier 
 SRM 
 Ridge regression: the term ½||w||2 “shrinks” the 
parameters towards zero to avoid overfitting 

 The term the term ½||w||2 can also be viewed as 
imposing a weight-decay prior on the weight vector, and 
we find the MAP estimate 
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Choosing the Kernel Function 

 Probably the most tricky part of using SVM. 
 The kernel function is important because it creates the 
kernel matrix, which summarizes all the data 

 Many principles have been proposed (diffusion kernel, 
Fisher kernel, string kernel, …) 

 There is even research to estimate the kernel matrix 
from available information 

 In practice, a low degree polynomial kernel or RBF 
kernel with a reasonable width is a good initial try 

 Note that SVM with RBF kernel is closely related to RBF 
neural networks, with the centers of the radial basis 
functions automatically chosen for SVM 
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Other Aspects of SVM 

 How to use SVM for multi-class classification? 
 One can change the QP formulation to become multi-class 
 More often, multiple binary classifiers are combined 

  See DHS 5.2.2 for some discussion 

 One can train multiple one-versus-all classifiers, or combine 
multiple pairwise classifiers “intelligently” 

 How to interpret the SVM discriminant function value as 
probability? 
 By performing logistic regression on the SVM output of a 
set of data (validation set) that is not used for training 

 Some SVM software (like libsvm) have these features 
built-in 



3/1/11 CSE 802. Prepared by Martin Law 43 

Software 

 A list of SVM implementation can be found at http://
www.kernel-machines.org/software.html 

 Some implementation (such as LIBSVM) can handle 
multi-class classification 

 SVMLight is among one of the earliest implementation of 
SVM 

 Several Matlab toolboxes for SVM are also available 
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Summary: Steps for Classification 

 Prepare the pattern matrix 
 Select the kernel function to use 
 Select the parameter of the kernel function and the 
value of C 
 You can use the values suggested by the SVM software, or 
you can set apart a validation set to determine the values 
of the parameter 

 Execute the training algorithm and obtain the αi 
 Unseen data can be classified using the αi and the 
support vectors 
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Strengths and Weaknesses of SVM 

 Strengths 
 Training is relatively easy  

   No local optimal, unlike in neural networks 

 It scales relatively well to high dimensional data 
 Tradeoff between classifier complexity and error can be 
controlled explicitly 

 Non-traditional data like strings and trees can be used as 
input to SVM, instead of feature vectors 

 Weaknesses 
 Need to choose a “good” kernel function. 
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Other Types of Kernel Methods 

 A lesson learnt in SVM: a linear algorithm in the feature 
space is equivalent to a non-linear algorithm in the input 
space 

 Standard linear algorithms can be generalized to its non-
linear version by going to the feature space 
 Kernel principal component analysis, kernel independent 
component analysis, kernel canonical correlation analysis, 
kernel k-means, 1-class SVM are some examples 



3/1/11 CSE 802. Prepared by Martin Law 47 

Conclusion 

 SVM is a useful alternative to neural networks 
 Two key concepts of SVM: maximize the margin and the 
kernel trick 

 Many SVM implementations are available on the web for 
you to try on your data set! 
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Resources 

 http://www.kernel-machines.org/ 
 http://www.support-vector.net/ 
 http://www.support-vector.net/icml-tutorial.pdf 
 http://www.kernel-machines.org/papers/tutorial-
nips.ps.gz 

 http://www.clopinet.com/isabelle/Projects/SVM/
applist.html 
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Demonstration 

 Iris data set 
 Class 1 and class 3 are “merged” in this demo 



3/1/11 CSE 802. Prepared by Martin Law 52 

Example of SVM Applications: Handwriting 
Recognition 
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Multi-class Classification 

 SVM is basically a two-class classifier 
 One can change the QP formulation to allow multi-class 
classification 

 More commonly, the data set is divided into two parts 
“intelligently” in different ways and a separate SVM is 
trained for each way of division 

 Multi-class classification is done by combining the output 
of all the SVM classifiers 
 Majority rule 
 Error correcting code 
 Directed acyclic graph 
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Epsilon Support Vector Regression  
(ε-SVR) 

 Linear regression in feature space 
 Unlike in least square regression, the error function is ε-
insensitive loss function 
 Intuitively, mistake less than ε is ignored 
 This leads to sparsity similar to SVM 

ε-ε
Value off 
target 

Penalty 

Value off 
target 

Penalty 

Square loss function ε-insensitive loss function 
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Epsilon Support Vector Regression  
(ε-SVR) 

 Given: a data set {x1, ..., xn} with target values {u1, ..., 
un}, we want to do ε-SVR 

 The optimization problem is 

 Similar to SVM, this can be solved as a quadratic 
programming problem 
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Epsilon Support Vector Regression  
(ε-SVR) 

 C is a parameter to control the amount of influence of 
the error 

 The ½||w||2 term serves as controlling the complexity of 
the regression function 
 This is similar to ridge regression 

 After training (solving the QP), we get values of αi and 
αi

*, which are both zero if xi does not contribute to the 
error function 

 For a new data z, 


