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History of SVM 

 SVM is related to statistical learning theory [3] 
 SVM was first introduced in 1992 [1]  
 SVM becomes popular because of its success in 
handwritten digit recognition  
 1.1% test error rate for SVM. This is the same as the error 
rates of a carefully constructed neural network, LeNet 4. 
  See Section 5.11 in [2] or the discussion in [3] for details 

 SVM is now regarded as an important example of “kernel 
methods”, one of the key area in machine learning 
 Note: the meaning of “kernel” is different from the “kernel” 
function for Parzen windows 

[1] B.E. Boser et al. A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on 
Computational Learning Theory 5 144-152, Pittsburgh, 1992.  

[2] L. Bottou et al.  Comparison of classifier methods: a case study in handwritten digit recognition. Proceedings of the 12th 
IAPR International Conference on Pattern Recognition, vol. 2, pp. 77-82. 

[3] V. Vapnik. The Nature of Statistical Learning Theory. 2nd edition, Springer, 1999. 
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What is a good Decision Boundary? 

 Consider a two-class, linearly 
separable classification problem 

 Many decision boundaries! 
 The Perceptron algorithm can be 
used to find such a boundary 

 Different algorithms have been 
proposed (DHS ch. 5) 

 Are all decision boundaries 
equally good? 

Class 1 

Class 2 
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Examples of Bad Decision Boundaries 

Class 1 

Class 2 

Class 1 

Class 2 
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Large-margin Decision Boundary 

 The decision boundary should be as far away from the 
data of both classes as possible 
 We should maximize the margin, m 
 Distance between the origin and the line wtx=k is k/||w|| 

Class 1 

Class 2 

m 
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Finding the Decision Boundary 

 Let {x1, ..., xn} be our data set and let yi ∈   {1,-1} be 
the class label of xi 

 The decision boundary should classify all points correctly 
⇒ 

 The decision boundary can be found by solving the 
following constrained optimization problem 

 This is a constrained optimization problem. Solving it 
requires some new tools 
 Feel free to ignore the following several slides; what is 
important is the constrained optimization problem above 
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Recap of Constrained Optimization


 Suppose we want to: minimize f(x) subject to g(x) = 0 
 A necessary condition for x0 to be a solution: 

  α: the Lagrange multiplier 
 For multiple constraints gi(x) = 0, i=1, …, m, we need a 
Lagrange multiplier αi for each of the constraints 
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Recap of Constrained Optimization 

 The case for inequality constraint gi(x)≤0 is similar, 
except that the Lagrange multiplier αi should be positive 

 If x0 is a solution to the constrained optimization 
problem 

 There must exist αi≥0 for i=1, …, m such that x0 satisfy 

 The function                        is also known as the 
Lagrangrian; we want to set its gradient to 0 
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Back to the Original Problem 

 The Lagrangian is 

 Note that ||w||2 = wTw 
  Setting the gradient of     w.r.t. w and b to zero, we 
have 
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The Dual Problem 

 If we substitute                        to     , we have  

 Note that  

 This is a function of αi only 
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The Dual Problem 

 The new objective function is in terms of αi only 
 It is known as the dual problem: if we know w, we know 
all αi; if we know all αi, we know w 

 The original problem is known as the primal problem 
 The objective function of the dual problem needs to be 
maximized! 

 The dual problem is therefore: 

Properties of αi when we introduce 
the Lagrange multipliers 

The result when we differentiate the 
original Lagrangian w.r.t. b 
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The Dual Problem 

 This is a quadratic programming (QP) problem 
 A global maximum of αi can always be found 

 w can be recovered by 
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Characteristics of the Solution 

 Many of the αi are zero 
 w is a linear combination of a small number of data points 
 This “sparse” representation can be viewed as data 
compression as in the construction of knn classifier 

 xi with non-zero αi are called support vectors (SV) 
 The decision boundary is determined only by the SV 
 Let tj (j=1, ..., s) be the indices of the s support vectors. We 
can write 

 For testing with a new data z 

 Compute                                                             and 
classify z as class 1 if the sum is positive, and class 2 
otherwise 

 Note: w need not be formed explicitly 
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The Quadratic Programming Problem 

 Many approaches have been proposed 
 Loqo, cplex, etc. (see http://www.numerical.rl.ac.uk/qp/qp.html) 

 Most are “interior-point” methods 
 Start with an initial solution that can violate the constraints 
 Improve this solution by optimizing the objective function 
and/or reducing the amount of constraint violation 

 For SVM, sequential minimal optimization (SMO) seems 
to be the most popular 
 A QP with two variables is trivial to solve 
 Each iteration of SMO picks a pair of (αi,αj) and solve the 
QP with these two variables; repeat until convergence 

 In practice, we can just regard the QP solver as a “black-
box” without bothering how it works 
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α6=1.4 

A Geometrical Interpretation 

Class 1 

Class 2 

α1=0.8 

α2=0 

α3=0 

α4=0 

α5=0 
α7=0 

α8=0.6 

α9=0 

α10=0 
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Non-linearly Separable Problems 

 We allow “error” ξi in classification; it is based on the 
output of the discriminant function wTx+b 

  ξi approximates the number of misclassified samples 

Class 1 

Class 2 
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Soft Margin Hyperplane 

 If we minimize ∑iξi, ξi can be computed by 

 ξi are “slack variables” in optimization 
 Note that ξi=0 if there is no error for xi 
 ξi is an upper bound of the number of errors 

 We want to minimize 

 C : tradeoff parameter between error and margin 

 The optimization problem becomes 
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The Optimization Problem 

 The dual of this new constrained optimization problem is 

 w is recovered as 

 This is very similar to the optimization problem in the 
linear separable case, except that there is an upper 
bound C on αi now 

 Once again, a QP solver can be used to find αi  
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Extension to Non-linear Decision Boundary 

 So far, we have only considered large-margin classifier 
with a linear decision boundary 

 How to generalize it to become nonlinear? 
 Key idea: transform xi to a higher dimensional space to 
“make life easier” 
 Input space: the space the point xi are located 
 Feature space: the space of φ(xi) after transformation 

 Why transform? 
 Linear operation in the feature space is equivalent to non-
linear operation in input space 

 Classification can become easier with a proper 
transformation. In the XOR problem, for example, adding a 
new feature of x1x2 make the problem linearly separable 
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Transforming the Data (c.f. DHS Ch. 5) 

 Computation in the feature space can be costly because it is 
high dimensional 
 The feature space is typically infinite-dimensional! 

 The kernel trick comes to rescue 

φ(  ) 

φ(  ) 

φ(  ) 
φ(  ) φ(  ) 

φ(  ) 

φ(  ) φ(  ) 

φ(.) φ(  ) 

φ(  ) 

φ(  ) 
φ(  ) 
φ(  ) 

φ(  ) 

φ(  ) 

φ(  ) 
φ(  ) φ(  ) 

Feature space Input space 
Note: feature space is of higher dimension 
than the input space in practice 
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The Kernel Trick 

 Recall the SVM optimization problem 

 The data points only appear as inner product 
 As long as we can calculate the inner product in the 
feature space, we do not need the mapping explicitly 

 Many common geometric operations (angles, distances) 
can be expressed by inner products 

 Define the kernel function K  by 
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An Example for φ(.) and K(.,.) 

 Suppose φ(.) is given as follows 

 An inner product in the feature space is 

 So, if we define the kernel function as follows, there is 
no need to carry out φ(.) explicitly 

 This use of kernel function to avoid carrying out φ(.) 
explicitly is known as the kernel trick 
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Kernel Functions 

 In practical use of SVM, the user specifies the kernel 
function; the transformation φ(.) is not explicitly stated 

 Given a kernel function K(xi, xj), the transformation φ(.) 
is given by its eigenfunctions (a concept in functional 
analysis) 
 Eigenfunctions can be difficult to construct explicitly 
 This is why people only specify the kernel function without 
worrying about the exact transformation 

 Another view: kernel function, being an inner product, is 
really a similarity measure between the objects  
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Examples of Kernel Functions 

 Polynomial kernel with degree d 

 Radial basis function kernel with width σ 

 Closely related to radial basis function neural networks 
 The feature space is infinite-dimensional 

 Sigmoid with parameter κ and θ  

 It does not satisfy the Mercer condition on all κ and θ 
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Modification Due to Kernel Function 

 Change all inner products to kernel functions 
 For training, 

Original 

With kernel 
function 



3/1/11 CSE 802. Prepared by Martin Law 27 

Modification Due to Kernel Function 

 For testing, the new data z is classified as class 1 if f ≥0, 
and as class 2 if f <0 

Original 

With kernel 
function 
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More on Kernel Functions 

 Since the training of SVM only requires the value of K(xi, 
xj), there is no restriction of the form of xi and xj 

 xi can be a sequence or a tree, instead of a feature vector 

 K(xi, xj) is just a similarity measure comparing xi and xj 
 For a test object z, the discriminat function essentially is 
a weighted sum of the similarity between z and a pre-
selected set of objects (the support vectors) 
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More on Kernel Functions 

 Not all similarity measure can be used as kernel 
function, however 
 The kernel function needs to satisfy the Mercer function, 
i.e., the function is “positive-definite” 

 This implies that the n by n kernel matrix, in which the (i,j)-
th entry is the K(xi, xj), is always positive definite 

 This also means that the QP is convex and can be solved in 
polynomial time 
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Example 

 Suppose we have 5 1D data points 
 x1=1, x2=2, x3=4, x4=5, x5=6, with 1, 2, 6 as class 1 and 4, 
5 as class 2 ⇒ y1=1, y2=1, y3=-1, y4=-1, y5=1 

 We use the polynomial kernel of degree 2 
 K(x,y) = (xy+1)2 
 C is set to 100 

 We first find αi (i=1, …, 5) by 
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Example 

 By using a QP solver, we get 
 α1=0, α2=2.5, α3=0, α4=7.333, α5=4.833 
 Note that the constraints are indeed satisfied 
 The support vectors are {x2=2, x4=5, x5=6} 

 The discriminant function is 

 b is recovered by solving f(2)=1 or by f(5)=-1 or by f(6)=1, 
as x2 and x5 lie on the line                                  and x4 
lies on the line                               

 All three give b=9 
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Example 

Value of discriminant function 

1 2 4 5 6 

class 2 class 1 class 1 
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Why SVM Work? 

 The feature space is often very high dimensional. Why 
don’t we have the curse of dimensionality? 

 A classifier in a high-dimensional space has many 
parameters and is hard to estimate 

 Vapnik argues that the fundamental problem is not the 
number of parameters to be estimated. Rather, the 
problem is about the flexibility of a classifier 

 Typically, a classifier with many parameters is very 
flexible, but there are also exceptions 
 Let xi=10i where i ranges from 1 to n. The classifier 
    can classify all xi correctly for all possible 
combination of class labels on xi 

 This 1-parameter classifier is very flexible 
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Why SVM works? 

 Vapnik argues that the flexibility of a classifier should not 
be characterized by the number of parameters, but by 
the flexibility (capacity) of a classifier 
 This is formalized by the “VC-dimension” of a classifier 

 Consider a linear classifier in two-dimensional space 
 If we have three training data points, no matter how 
those points are labeled, we can classify them perfectly 
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VC-dimension 

 However, if we have four points, we can find a labeling 
such that the linear classifier fails to be perfect 

 We can see that 3 is the critical number 
 The VC-dimension of a linear classifier in a 2D space is 3 
because, if we have 3 points in the training set, perfect 
classification is always possible irrespective of the 
labeling, whereas for 4 points, perfect classification can 
be impossible 
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VC-dimension 

 The VC-dimension of the nearest neighbor classifier is 
infinity, because no matter how many points you have, 
you get perfect classification on training data 

 The higher the VC-dimension, the more flexible a 
classifier is 

 VC-dimension, however, is a theoretical concept; the VC-
dimension of most classifiers, in practice, is difficult to be 
computed exactly 
 Qualitatively, if we think a classifier is flexible, it probably 
has a high VC-dimension 
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Structural Risk Minimization (SRM) 

 A fancy term, but it simply means: we should find a 
classifier that minimizes the sum of training error 
(empirical risk) and a term that is a function of the 
flexibility of the classifier (model complexity) 

 Recall the concept of confidence interval (CI) 
 For example, we are 99% confident that the population 
mean lies in the 99% CI estimated from a sample 

 We can also construct a CI for the generalization error 
(error on the test set) 
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Structural Risk Minimization (SRM) 

Increasing 
error rate 

CI of test error 
for classifier 1 

Training error CI of test error 
for classifier 2 

Training error 

 SRM prefers classifier 2 although it has a higher 
training error, because the upper limit of CI is smaller 
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Structural Risk Minimization (SRM) 

 It can be proved that the more flexible a classifier, the 
“wider” the CI is 

 The width can be upper-bounded by a function of the 
VC-dimension of the classifier 

 In practice, the confidence interval of the testing error 
contains [0,1] and hence is trivial 
 Empirically, minimizing the upper bound is still useful 

 The two classifiers are often “nested”, i.e., one classifier 
is a special case of the other 

 SVM can be viewed as implementing SRM because ∑i ξi 
approximates the training error; ½||w||2 is related to 
the VC-dimension of the resulting classifier 

 See http://www.svms.org/srm/ for more details 
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Justification of SVM 

 Large margin classifier 
 SRM 
 Ridge regression: the term ½||w||2 “shrinks” the 
parameters towards zero to avoid overfitting 

 The term the term ½||w||2 can also be viewed as 
imposing a weight-decay prior on the weight vector, and 
we find the MAP estimate 
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Choosing the Kernel Function 

 Probably the most tricky part of using SVM. 
 The kernel function is important because it creates the 
kernel matrix, which summarizes all the data 

 Many principles have been proposed (diffusion kernel, 
Fisher kernel, string kernel, …) 

 There is even research to estimate the kernel matrix 
from available information 

 In practice, a low degree polynomial kernel or RBF 
kernel with a reasonable width is a good initial try 

 Note that SVM with RBF kernel is closely related to RBF 
neural networks, with the centers of the radial basis 
functions automatically chosen for SVM 
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Other Aspects of SVM 

 How to use SVM for multi-class classification? 
 One can change the QP formulation to become multi-class 
 More often, multiple binary classifiers are combined 

  See DHS 5.2.2 for some discussion 

 One can train multiple one-versus-all classifiers, or combine 
multiple pairwise classifiers “intelligently” 

 How to interpret the SVM discriminant function value as 
probability? 
 By performing logistic regression on the SVM output of a 
set of data (validation set) that is not used for training 

 Some SVM software (like libsvm) have these features 
built-in 
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Software 

 A list of SVM implementation can be found at http://
www.kernel-machines.org/software.html 

 Some implementation (such as LIBSVM) can handle 
multi-class classification 

 SVMLight is among one of the earliest implementation of 
SVM 

 Several Matlab toolboxes for SVM are also available 
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Summary: Steps for Classification 

 Prepare the pattern matrix 
 Select the kernel function to use 
 Select the parameter of the kernel function and the 
value of C 
 You can use the values suggested by the SVM software, or 
you can set apart a validation set to determine the values 
of the parameter 

 Execute the training algorithm and obtain the αi 
 Unseen data can be classified using the αi and the 
support vectors 
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Strengths and Weaknesses of SVM 

 Strengths 
 Training is relatively easy  

   No local optimal, unlike in neural networks 

 It scales relatively well to high dimensional data 
 Tradeoff between classifier complexity and error can be 
controlled explicitly 

 Non-traditional data like strings and trees can be used as 
input to SVM, instead of feature vectors 

 Weaknesses 
 Need to choose a “good” kernel function. 
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Other Types of Kernel Methods 

 A lesson learnt in SVM: a linear algorithm in the feature 
space is equivalent to a non-linear algorithm in the input 
space 

 Standard linear algorithms can be generalized to its non-
linear version by going to the feature space 
 Kernel principal component analysis, kernel independent 
component analysis, kernel canonical correlation analysis, 
kernel k-means, 1-class SVM are some examples 
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Conclusion 

 SVM is a useful alternative to neural networks 
 Two key concepts of SVM: maximize the margin and the 
kernel trick 

 Many SVM implementations are available on the web for 
you to try on your data set! 
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Resources 

 http://www.kernel-machines.org/ 
 http://www.support-vector.net/ 
 http://www.support-vector.net/icml-tutorial.pdf 
 http://www.kernel-machines.org/papers/tutorial-
nips.ps.gz 

 http://www.clopinet.com/isabelle/Projects/SVM/
applist.html 
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Demonstration 

 Iris data set 
 Class 1 and class 3 are “merged” in this demo 
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Example of SVM Applications: Handwriting 
Recognition 
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Multi-class Classification 

 SVM is basically a two-class classifier 
 One can change the QP formulation to allow multi-class 
classification 

 More commonly, the data set is divided into two parts 
“intelligently” in different ways and a separate SVM is 
trained for each way of division 

 Multi-class classification is done by combining the output 
of all the SVM classifiers 
 Majority rule 
 Error correcting code 
 Directed acyclic graph 
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Epsilon Support Vector Regression  
(ε-SVR) 

 Linear regression in feature space 
 Unlike in least square regression, the error function is ε-
insensitive loss function 
 Intuitively, mistake less than ε is ignored 
 This leads to sparsity similar to SVM 

ε
-ε

Value off 
target 

Penalty 

Value off 
target 

Penalty 

Square loss function ε-insensitive loss function 
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Epsilon Support Vector Regression  
(ε-SVR) 

 Given: a data set {x1, ..., xn} with target values {u1, ..., 
un}, we want to do ε-SVR 

 The optimization problem is 

 Similar to SVM, this can be solved as a quadratic 
programming problem 
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Epsilon Support Vector Regression  
(ε-SVR) 

 C is a parameter to control the amount of influence of 
the error 

 The ½||w||2 term serves as controlling the complexity of 
the regression function 
 This is similar to ridge regression 

 After training (solving the QP), we get values of αi and 
αi

*, which are both zero if xi does not contribute to the 
error function 

 For a new data z, 


