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Agenda Today

e Support Vector Machines
* Sequence Kernels

* Learning Feature Representations: Embeddings
e Autoencoders
* Embedding Layers
* NLP: Word2Vec, Doc2Vec, GloVe, ELMo, ULMFit, BERT, ELMo



Motivation

* Text-independent speaker identification (verification, recognition)
* Large number of target speakers (hundreds of thousands)
* Very little data per speaker (4-10 seconds)
e Often just 1 sample for enrollment (training)

e Age estimation from speech (today‘s exercise!)
* Regression problem
* Sparse data



SVM

Slides by Martin Law



Sequence Kernels

Slides by Elmar Noth (FAU-INF5)



Modelling Speakers for SVM

e Sequences may differ in length
* Single decision for whole sequence (many-to-one)
* Use Gaussian mixture models to represent speakers




GMM Supervectors

* Train a ,background” model with many speakers — unsupervised!

* Adapt a ,target” model for every speaker (or class), eg. max-a-
posteriori

* Use GMM parameters as features to SVM

UBM : L > Target




Bhattacharyya based Kernel

* You can use any kernel with the supervectors, however...

* Since all SV are derived from the same UBM, you can compute the
,distance” of the components based on Bhattacharyya distance
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You et al. 2008: An SVM Kernel With GMM-Supervector Based on the Bhattacharyya Distance for
Speaker Recognition (https://ieeexplore.ieee.org/document/4734326)



https://ieeexplore.ieee.org/document/4734326

Learning Feature Representations

* MFCC etc. are spectral/cepstral speech features, motivated by how
the source signal is produced

* For text, we resorted to one-hot encoding

* It is often better to learn the feature representations instead

* Convolutional layers learn to extract structural (temporal) information

 Embedding layer learns a (typically compressed) representation of the one-
hot input.

 ...randomly initialized, trained as part of the network (supervised!)



Learning Feature Representations

* Leverage unlabeled data to learn feature representations

* Learn how observations relate to their surroundings,
hence the name ,,embedding”

* Most embeddings are some sort of auto-encoder (AE)

e ...they learn about the structure by by first encoding the data to an
intermediate representation x -> h,

e ...then decoding/reconstructing it h -> r, where r should match x.
* Undercomplete AE: dim(h) < dim(x)
* Overcomplete AE: dim(h) > dim(x)



AE for Speech Tasks

* Input (x): 11 Frames of MFCC
e Qutput (z): center MFCC frame
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Embeddings for NLP
How to represent words in Context?

* Bag-of-words (BOW)

* Word2Vec: Continuous bag of words (CBOW) and skip-gram
* GloVe

* FastText

* CoVe

* Higher-level embeddings: ULMfit, ELMo, BERT



Word2Vec: CBOW and Skip-Gram

* Predictive model using trained feed-forward network
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Mikolov et al., 2013: Efficient Estimation of Word Representations in Vector Space https://github.com/tmikolov/word2vec



https://github.com/tmikolov/word2vec

GloVe

e Jeffrey Pennington, Richard Socher, and Christopher D. Manning.
2014. GloVe: Global Vectors for Word Representation.

* Co-occurrence count-based, analytically reduce dimensionality
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https://nlp.stanford.edu/pubs/glove.pdf
https://nlp.stanford.edu/projects/glove/

FastText (Facebook Al)

* Bojanowski et al., 2016: Enriching Word Vectors with Subword
Information

e Use character n-grams instead of words to be able to predict
representations for unseen words <o T
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https://fasttext.cc/

CoVe

e McCann et al. 2017: Learned in Translation: Contextualized Word
Vectors

e Use LSTM from (unrelated) machine translation task as embedding

Task-specific Model
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Figure 1: We a) train a two-layer, bidirectional LSTM as the encoder of an attentional sequence-to-
sequence model for machine translation and b) use it to provide context for other NLP models.



ULMFIT

 Howard and Ruder, 2018: Universal Language Model Fine-tuning for
Text Classification

* Multi-purpose: sentiment, question classification, topic classification
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ELMo

* Peters et al. 2018: Deep contextualized word representations
* Train forward and backward LM to learn surroundings
 Embeddings are context-dependent (non-static)




ELMo

Embedding of “stick” in “Let’s stick to” - Step #1
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http://jalammar.github.io/illustrated-bert/



http://jalammar.github.io/illustrated-bert/

ELMo

Embedding of “stick” in “Let’s stick to” - Step #2

1- Concatenate hidden layers Forward Language Model Backward Language Model
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ELMo embedding of “stick” for this task in this context

http://jalammar.github.io/illustrated-bert/



http://jalammar.github.io/illustrated-bert/

BERT

* Devlin et al. 2018: BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

* Bidirectional Transformer, using masking during training
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BERT — multi-task!
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(b) Single Sentence Classification Tasks:
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BERT
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(c) Question Answering Tasks:
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BERT

* https://colab.research.google.com/github/tensorflow/tpu/blob/mast
er/tools/colab/bert finetuning with cloud tpus.ipynb

e https://github.com/google-research/bert

e Use embeddings from intermediate layers
* Fine-tune to specific task in few minutes


https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/bert_finetuning_with_cloud_tpus.ipynb
https://github.com/google-research/bert

